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Summary. We consider a nonparametric additive model of a conditional mean

function in which the number of variables and additive components may be larger

than the sample size but the number of non-zero additive components is “small”

relative to the sample size. The statistical problem is to determine which ad-

ditive components are non-zero. The additive components are approximated by

truncated series expansions with B-spline bases. With this approximation, the

problem of component selection becomes that of selecting the groups of coeffi-

cients in the expansion. We apply the adaptive group Lasso to select nonzero

components, using the group Lasso to obtain an initial estimator and reduce the

dimension of the problem. We give conditions under which the group Lasso se-

lects a model whose number of components is comparable with the underlying

model and, the adaptive group Lasso selects the non-zero components correctly

with probability approaching one as the sample size increases and achieves the

optimal rate of convergence. Following model selection, oracle-efficient, asymp-

totically normal estimators of the non-zero components can be obtained by using

existing methods. The results of Monte Carlo experiments show that the adap-

tive group Lasso procedure works well with samples of moderate size. A data

example is used to illustrate the application of the proposed method.
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1 Introduction

Let (Yi,Xi), i = 1, . . . , n be random vectors that are independently and identically dis-

tributed as (Y,X), where Y is a response variable and X = (X1, . . . , Xp)
′ is a p-dimensional
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covariate vector. Consider the nonparametric additive model

Yi = µ +

p∑
j=1

fj(Xij) + εi, (1)

where µ is an intercept term, Xij is the jth component of Xi, the fj’s are unknown functions,

and εi is an unobserved random variable with mean zero and finite variance σ2. Suppose

that some of the additive components fj are zero. The problem addressed in this paper is

to distinguish the nonzero components from the zero components and estimate the nonzero

components. We allow the possibility that p is larger than the sample size n, which we

represent by letting p increase as n increases. We propose a penalized method for vari-

able selection in (1) and show that the proposed method can correctly select the nonzero

components with high probability.

There has been much work on penalized methods for variable selection and estimation

with high-dimensional data. Methods that have been proposed include the bridge estimator

(Frank and Friedman 1993; Huang, Ma and Horowitz 2008), least absolute shrinkage and

selection operator (Lasso, Tibshirani 1996), the smoothly clipped absolute deviation (SCAD)

penalty (Fan and Li 2001; Fan and Peng 2004), the elastic net penalty (Zou and Hastie

2006), and the minimum concave penalty (Zhang 2007). Much progress has been made in

understanding the statistical properties of these methods in both fixed p and p À n settings.

In particular, many authors have studied the variable selection, estimation and prediction

properties of the Lasso in both low- and high-dimensional settings. See for example, Knight

and Fu (2001); Greenshtein and Ritov (2004); Meinshausen and Bühlmann (2006); Zhao and

Yu (2006); Zou (2006); Bunea, Tsybakov and Wegkamp (2007); Meinshausen and Yu (2008);

Huang, Ma and Zhang (2008); van de Geer (2008) and Zhang and Huang (2008), among

others. All these authors assume a linear or other parametric model. In many applications,

however, there is little a priori justification for assuming that the effects of covariates take a

linear form or belong to any other known, finite-dimensional parametric family. For example,

in studies investigating the relationship between a phenotype and genomic measurements,

it is necessary to take account of environmental covariates whose effects on the outcome

variable can be nonlinear. In studies of economic development, the effects of covariates on

the growth of gross domestic product can be nonlinear.

In the context of smoothing spline ANOVA, Lin and Zhang (2006) proposed the compo-

nent selection and smoothing operator (COSSO) method for model selection and estimation

in multivariate nonparametric regression models. For fixed p, they showed that the COSSO

estimator in the additive model converges at the rate n−d/(2d+1), where d is the order of

smoothness of the components. They also showed that, in a special case of tensor product

design, the COSSO correctly selects the components with high probability. Zhang and Lin

(2006) considered the COSSO for nonparametric regression in exponential families.
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There is a large body of literature on estimation in nonparametric additive models. For

example, Stone (1985, 1986) showed that the additive spline estimators achieve optimal

rate of convergence for general and fixed p as for p = 1. Horowitz and Mammen (2004)

and Horowitz, Klemelae, and Mammen (2006) showed that if p is fixed and mild regularity

conditions hold, then oracle-efficient estimates of the fj’s can be obtained by a two-step pro-

cedure. Here, oracle efficiency means that the estimator of each fj has the same asymptotic

distribution that it would have if all the other fj’s were known. However, these papers did

not discuss variable selection in nonparametric additive models.

In this paper, we propose to use the group Lasso method for variable selection in (1) based

on a spline approximation to the nonparametric components. With this approximation, each

nonparametric component is represented by a linear combination of spline basis functions.

Consequently, the problem of component selection becomes that of selecting the groups of

coefficients in the linear combinations. It is natural to apply the group Lasso method, since

it is desirable to take into the grouping structure in the approximation model. To achieve

selection consistency, we apply the group Lasso iteratively as follows. First, we use the group

Lasso to obtain an initial estimator and reduce the dimension of the problem. Then we use

the adaptive group Lasso to select the final set of groups of variables. This approach follows

the idea of the adaptive Lasso (Zou 2006) and a proposal by Bühlmann and Meier (2008)

in the context of variable selection in linear regression. They considered a combination of

Lasso and adaptive Lasso steps, and more generally, a multi-step adaptive Lasso procedure.

We show that the group Lasso selects a model whose number of components is compara-

ble with the underlying model. Then, using the group Lasso result as the initial estimator,

the adaptive group Lasso selects the correct model with high probability and achieves the

optimal rate of convergence. Following model selection, oracle efficient, asymptotically nor-

mal estimates of the non-zero additive components can be obtained by, for example, using

the methods of Mammen, Linton, and Nielsen (1999) or Horowitz and Mammen (2004). An

important aspect of our results is that p can be much larger than n.

The remainder of the paper is organized as follows. Section 2 describes the group Lasso

and the adaptive group Lasso for variable selection in nonparametric additive models. Section

3 presents the asymptotic properties of these methods in “large p, small n” settings. Section

4 presents the results of simulation studies to evaluate the finite-sample performance of these

methods. Section 5 provides an illustrative application, and Section 6 presents concluding

remarks. Proofs of the results stated in Section 3 are given in Section 7.
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2 The adaptive group Lasso in nonparametric additive

models

We describe a two-step approach to using the group Lasso for variable selection based on

a spline representation of each component in additive models. In the first step, we use the

standard group Lasso to achieve an initial reduction of the dimension in the model and

obtain an initial estimator of the nonparametric components. In the second step, we use the

adaptive group Lasso to achieve consistent selection.

Suppose that each Xj takes values in [a, b] where a < b are finite numbers. To ensure

unique identification of the fj’s, we assume that Efj(Xj) = 0, 1 ≤ j ≤ p. Let a = ξ0 <

ξ1 < · · · < ξK < ξK+1 = b be a partition of [a, b] into K subintervals IKt = [ξt, ξt+1), t =

0, . . . , K−1 and IKK = [ξK , ξK+1], where K ≡ Kn = nv with 0 < v < 0.5 is a positive integer

such that max1≤k≤K+1 |ξk − ξk−1| = O(n−v). Let Sn be the space of polynomial splines of

degree l ≥ 1 consisting of functions s satisfying: (i) the restriction of s to IKt is a polynomial

of degree l for 1 ≤ t ≤ K; (ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, s is l′ times continuously

differentiable on [a, b]. This definition is phrased after Stone (1985), which is a descriptive

version of Schumaker (1981), page 108, Definition 4.1.

There exists a normalized B-spline basis {φk, 1 ≤ k ≤ mn} for Sn, where mn ≡ Kn + l

(Schumaker 1981). Thus for any fnj ∈ Sn, we can write

fnj(x) =
mn∑

k=1

βjkφk(x), 1 ≤ j ≤ p.

Under suitable smoothness assumptions, the fj’s can be well approximated by functions

in Sn. Accordingly, the variable selection method described in this paper is based on the

representation (2).

Let ‖a‖2 ≡
( ∑m

j=1 |aj|2
)1/2

denote the `2 norm of any vector a ∈ IRm. Let βnj =

(βj1, . . . , βjmn)′ and βn = (β′n1, . . . , β
′
np)

′. Let wn = (wn1, . . . , wnp)
′ be a given vector of

weights, where 0 ≤ wnj ≤ ∞, 1 ≤ j ≤ p. Consider the penalized least squares criterion

Ln(µ, βn) =
n∑

i=1

[
Yi − µ−

p∑
j=1

mn∑

k=1

βjkφk(Xij)
]2

+ λn

p∑
j=1

wnj‖βnj‖2, (2)

where λn is a penalty parameter. We study the estimators that minimize Ln(µ, βn) subject

to the constraints
n∑

i=1

mn∑

k=1

βjkφk(Xij) = 0, 1 ≤ j ≤ p. (3)

These centering constraints are sample analogs of the identifying restriction Efj(Xj) = 0, 1 ≤
j ≤ p. We can convert (2)-(3) to an unconstrained optimization problem by centering the
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response and the basis functions. Let

φ̄jk =
1

n

n∑
i=1

φk(Xij), ψjk(x) = φk(x)− φ̄jk. (4)

For simplicity and without causing confusion, we simply write ψk(x) = ψjk(x). Denote

Zij =
(
ψ1(Xij), . . . , ψmn(Xij)

)′
.

So Zij consists of values of the (centered) basis functions at the ith observation of the jth

covariate. Let Zj = (Z1j, . . . , Znj)
′ be the n ×mn ‘design’ matrix corresponding to the jth

covariate. The total ‘design’ matrix is Z = (Z1, . . . ,Zp). Let Y = (Y1 − Y , . . . , Yn − Y )′.

With this notation, we can write

Ln(βn; λ) = ‖Y − Zβn‖2
2 + λn

p∑
j=1

wnj‖βnj‖2. (5)

Here we have dropped µ in the argument of Ln. With the centering, µ̂ = Y . Then minimizing

(2) subject to (3) is equivalent to minimizing (5) with respect to βn, but the centering

constraints are not needed for (5).

We now describe the two-step approach to component selection in the nonparametric

additive model (1).

Step 1. Compute the group Lasso estimator. Let

Ln1(βn, λn1) = ‖Y − Zβn‖2
2 + λn1

p∑
j=1

‖βnj‖2.

This objective function is the special case of (5) that is obtained by setting wnj = 1, 1 ≤ j ≤
p. The group Lasso estimator is β̃n ≡ β̃n(λn1) = arg minβn

Ln1(βn; λn1).

Step 2. Use the group Lasso estimator β̃n to obtain the weights by setting

wnj =

{
‖β̃nj‖−1

2 , if ‖β̃nj‖2 > 0,

∞, if ‖β̃nj‖2 = 0.

The adaptive group Lasso objective function is

Ln2(βn; λn2) = ‖Y − Zβn‖2
2 + λn2

p∑
j=1

wnj‖βnj‖2.

Here we define 0 · ∞ = 0. Thus the components not selected by the group Lasso are not in-

cluded in Step 2. The adaptive group Lasso estimator is β̂n ≡ β̂n(λn2) = arg minβn
Ln2(βn; λn2).

5



Finally, the adaptive group Lasso estimators of µ and fj are

µ̂n = Y ≡ n−1

n∑
i=1

Yi, f̂nj(x) =
mn∑

k=1

β̂jkψk(x), 1 ≤ j ≤ p.

3 Main results

This section presents our results on the asymptotic properties of the estimators defined in

Steps 1 and 2 of Section 2.

Let k be a non-negative integer, and let α ∈ (0, 1] be such that d = k + α > 0.5. Let F
be the class of functions f on [0, 1] whose kth derivative f (k) exists and satisfies a Lipschitz

condition of order α:

|f (k)(s)− f (k)(t)| ≤ C|s− t|α for s, t ∈ [a, b].

In (1), without loss of generality, suppose that the first q components are nonzero, that

is, fj(x) 6= 0, 1 ≤ j ≤ q, but fj(x) ≡ 0, q + 1 ≤ j ≤ p. Let A1 = {1, . . . , q} and A0 =

{q + 1, . . . , p}. Define ‖f‖2 = [
∫ b

a
f 2(x)dx]1/2 for any function f , whenever the integral

exists.

Consider the following conditions.

(A1) The number of nonzero components q is fixed and there is a constant cf > 0 such

that min1≤j≤q ‖fj‖2 ≥ cf .

(A2) The random variables ε1, . . . , εn are independent and identically distributed with

Eεi = 0 and Var(εi) = σ2. Furthermore, their tail probabilities satisfy P (|εi| > x) ≤
K exp(−Cx2), i = 1, . . . , n, for all x ≥ 0 and for constants C and K.

(A3) Efj(Xj) = 0 and fj ∈ F , j = 1, . . . , q.

(A4) There exist constants C1 and C2 such that the density function gj of Xj satisfies

0 < C1 ≤ gj(x) ≤ C2 < ∞ on [a, b] for every 1 ≤ j ≤ p.

Let |A| denote the cardinality of any set A ⊂ {1, . . . , p}. Denote

βA = (β′j, j ∈ A)′ and ZA = (Zj, j ∈ A).

Here βA is an |A|mn × 1 vector and ZA is an n× |A|mn matrix. Let CA = Z′AZA/n. When

A = {1, . . . , p}, we simply write C = Z′Z/n. Define

ρmin(m) = min
|A|=m

min
‖u‖=1

u′CAu, ρmax(m) = max
|A|=m

max
‖u‖=1

u′CAu.

So if we take A = {1, . . . , p}, then ρmin(p) and ρmax(p) are the smallest and largest eigenvalues

of C, respectively. Note that if n < pmn, then ρmin(p) = 0.
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3.1 Estimation consistency of the group Lasso

Let q∗ be a fixed integer such that, for ρn∗ = ρmin(q
∗), ρ∗n = ρmax(q

∗) and

ρ̄ = ρ∗n/ρn∗ and M1 = 2 + 4ρ̄, (6)

we have

(2 + 4ρ̄)q + 1 ≤ q∗. (7)

Below, for any two sequences {an, bn, n = 1, 2, . . . , }, we write an ³ bn if there are

constants 0 < c1 < c2 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently large, and write

an ³p bn if this inequality holds with probability converging to one.

By Lemma 3 in Section 6, we have ρn∗ ³p m−1
n , ρ∗n ³p m−1

n and ρ̄ ³p 1. Define

λn,p = 2σ
√

8(1 + c0)mnq∗ρ̄ρ∗nn log(pmn),

where c0 ≥ 0. Note that for fixed q∗, λn,p ³p

√
n log(pmn). Let A1 = {j : ‖fj‖2 6= 0, 1 ≤

j ≤ p} = {j : ‖βnj‖2 6= 0, 1 ≤ j ≤ p} = {1, . . . , q} and Ã1 = {j : ‖β̃nj‖2 6= 0, 1 ≤ j ≤ p}.

Theorem 1 Suppose that (A1) to (A4) and (7) hold and that λn1 ≥ λn,p.

(i) With probability converging to 1, |Ã1| ≤ M1|A1| = M1q for M1 defined in (6).

(ii) If m2
n log(pmn)/n → 0 and (λ2

n1mn)/n2 → 0 as n →∞, then all the nonzero βnj, 1 ≤
j ≤ q, are selected with probability converging to one.

(iii)

p∑
j=1

‖β̃nj − βnj‖2
2 = Op

(m2
n log(pmn)

n

)
+ Op

(mn

n

)
+ O

( 1

m2d−1
n

)
+ O

(
4m2

nλ2
n1

n2

)
.

Part (i) of Theorem 1 says that the group Lasso selects a model whose dimension is a constant

multiple of the number of non-zero additive components fj, regardless of the number of

additive components that are zero.. Part (ii) implies that every nonzero coefficient will be

selected with high probability. Part (iii) shows that the difference between the coefficients in

the spline representation of the nonparametric functions in (1) and their estimators converges

to zero in probability. The rate of convergence is determined by four terms: the stochastic

error in estimating the nonparametric components (the first term) and the intercept µ (the

second term), the spline approximation error (the third term) and the bias due to penalization

(the fourth term).

Let f̃nj(x) =
∑mn

j=1 β̃jkψ(x), 1 ≤ j ≤ p. The following theorem is a consequence of

Theorem 1.

Theorem 2 Suppose that (A1) to (A4) hold and that λn1 ≥ λn,p. Then,

7



(i) Let Ãf = {j : ‖f̃nj‖2 > 0, 1 ≤ j ≤ p}. There is a constant M1 > 0 such that, with

probability converging to 1, |Ãf | ≤ M1q.

(ii) If (mn log(pmn))/n → 0 and (λ2
n1mn)/n2 → 0 as n → ∞, then all the nonzero

additive components fj, 1 ≤ j ≤ q, are selected with probability converging to one.

(iii)

‖f̃nj − fj‖2
2 = Op

(mn log(pmn)

n

)
+ Op

(
1

n

)
+ O

( 1

m2d
n

)
+ O

(
4mnλ2

n1

n2

)
, j ∈ Ã2,

where Ã2 = A1 ∪ Ã1.

Thus under the conditions of Theorem 2, the group Lasso selects all the nonzero additive

components with high probability. Part (iii) of the theorem gives the rate of convergence of

the group Lasso estimator of the nonparametric components. Below, for any two sequences

{an, bn, n = 1, 2, . . . , }, we write an ³ bn if there are constants 0 < c1 < c2 < ∞ such that

c1 ≤ an/bn ≤ c2 for all n sufficiently large, and write an ³p bn if this inequality holds with

probability converging to one.

We now state a useful corollary of Theorem 2.

Corollary 1 Suppose that (A1) to (A4) hold. If λn1 ³
√

n log(pmn) and mn ³ n1/(2d+1).

Then,

(i) If n−2d/(2d+1) log(p) → 0 as n → ∞, then with probability converging to one, all the

nonzero components fj, 1 ≤ j ≤ q, are selected and the number of selected components is no

more than M1q.

(ii)

‖f̃nj − fj‖2
2 = Op(n

−2d/(2d+1) log(pmn)), j ∈ Ã2.

For the λn1 and mn given in Corollary 1, the number of nonzero components can be as

large as pn = exp(o(n2d/(2d+1))). For example, if each fj has continuous second derivative

(d = 2), then pn = exp(o(n4/5)), which can be much larger than n.

3.2 Selection consistency of the adaptive group Lasso

We now consider the properties of the adaptive group Lasso. We first state a general result

concerning the selection consistency of the adaptive group Lasso, assuming an initial consis-

tent estimator is available. We then apply to the case when the group Lasso is used as the

initial estimator.

Denote βnA1
= (β′nj, j ∈ A1)

′, ZA1 = (Zj, j ∈ A1) and CA1 = n−1Z′A1
ZA1 . Let ρn1 and

ρn2 be the smallest and largest eigenvalues of CA1 , respectively. Denote bn1 = min{‖βnj‖2 :

j ∈ A1}. Consider the following conditions.
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(B1) The initial estimators β̃nj are rn-consistent at zero:

rn max
j∈A0

‖β̃nj‖2 = OP (1), rn →∞,

and there exists a constant cb > 0 such that

P(min
j∈A1

‖β̃nj‖2 ≥ cbbn1) → 1,

where bn1 = minj∈A1 ‖βnj‖2.

(B2) Let q be the number of nonzero components and sn = p − q be the number of zero

components. Suppose that

(a)
mn

n1/2
+

λn2m
1/4
n

n
= o(1),

(b)
n1/2

{
log(snmn)

}1/2

λn2rn

+
n

λn2rnm
(2d+1)/2
n

= o(1).

For β̂n ≡ (β̂
′
n1, . . . , β̂

′
np)

′ and βn ≡ (β′n1, . . . , β
′
np)

′, we say β̂n =0 βn if sgn0(‖β̂nj‖) =

sgn0(‖βnj‖), 1 ≤ j ≤ pn, where sgn0(|x|) = 1 if |x| > 0 and = 0 if |x| = 0.

Theorem 3 Suppose that conditions (B1), (B2) and (A2)-(A4) hold. Then

(i)

P(β̂n =0 βn) → 1.

(ii)

q∑
j=1

‖β̂nj − βnj‖2
2 = Op

(m2
n

n

)
+ Op

(mn

n

)
+ O

( 1

m2d−1
n

)
+ O

(
4m2

nλ
2
n2

n2

)
.

This theorem is concerned with the selection and estimation properties of the adaptive

group Lasso in terms of β̂n. The following theorem states the results in terms of the estima-

tors of the nonparametric components.

Theorem 4 Suppose that conditions (B1), (B2) and (A2)-(A4) hold. Then

(i)

P
(
‖f̂nj‖2 > 0, j ∈ A1 and ‖f̂nj‖2 = 0, j ∈ A0

)
→ 1.

(ii)
q∑

j=1

‖f̂nj − fj‖2
2 = Op

(mn

n

)
+ Op

( 1

n

)
+ O

( 1

m2d
n

)
+ O

(
4mnλ2

n2

n2

)
.
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Part (i) of this theorem states that the adaptive group Lasso can consistently distinguish-

ing nonzero components from zero components. Part (ii) gives an upper bound on the rate

of convergence of the estimator.

Condition (B2) can be further simplified if we have rn ³ nd/(2d+1)/
√

log(pnmn) in the

initial estimator, e.g., the group Lasso with λn1 ³
√

n log(pnmn) and use mn ³ n1/(2d+1) for

d ≥ 1. In this case, (B2) becomes

λn2

n(8d+3)/(8d+4)
= o(1) and

n1/(4d+2) log(pnmn)

λn2

= o(1). (8)

We summarize the above discussion in the following corollary.

Corollary 2 Let the group Lasso estimator β̃n ≡ β̃n(λn1) with λn1 ³
√

n log(pnmn) be

the initial estimator in the adaptive group Lasso. Suppose that the conditions of Theorem 1

hold. If λn2 ≥ O(n1/2) and satisfies (8), then the adaptive group Lasso consistently selects

the nonzero components in (1), that is, part (i) of Theorem 4 holds. In addition,

q∑
j=1

‖f̂nj − fj‖2
2 = Op

(
n−2d/(2d+1)

)
.

4 Simulation studies

We use simulation to evaluate the performance of the adaptive group Lasso with regard to

variable selection. We compare it with the group Lasso and Lasso. Here the Lasso estimator

is defined as the value that minimizes

‖Y − Zβn‖2
2 + λn

p∑
j=1

mn∑

k=1

|βjk|.

The Lasso estimator does not take into account the grouping structure in the spline expan-

sions of the components.

The generating model is

yi = f(xi) + εi ≡
p∑

j=1

fj(xij) + εi, i = 1, · · · , n.

We consider two cases, p = 21 and p = 100. In each case, the number of nonzero functions

q = 4. Thus fj(x) ≡ 0 for j = 5, · · · , p. The sample size n = 100. We use the cubic

B-spline with six evenly distributed knots for all the functions fk(x), The group Lasso and

the adaptive group Lasso estimates are computed using the algorithm proposed by Yuan and

Lin (2006). The Lasso estimates are computed using the Lars algorithm (Efron et al. 2004).
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The group Lasso is used as the initial estimate for the adaptive group lasso. The penalty

parameters in all the methods are chosen using the BIC (Schwarz 1978). The number of

replications in all the simulations is 400.

Example 1.

f(xi) = −7 + 8xi1 − 3xi2 + 10x2
i3 − 6xi4(xi4 − 1) + εi,

The covariates are simulated in the following way. First, wi1, · · · , wip, ui, vi are generated

independently from N(0, 1) truncated to the interval (0, 1), i = 1, · · · , n. Then we set

xik = (wik + tui)/(1+ t) for k = 1, · · · , 4 and xik = (wik + tvi)/(1+ t) for k = 5, · · · , p, where

t controls the amount of correlation among predictors. We use Cor(xik, xij) = t2/(1+t2), 1 ≤
j ≤ 4, 1 ≤ k ≤ 4 and Cor(xik, xij) = t2/(1 + t2), 5 ≤ j ≤ p, 5 ≤ k ≤ p, but the covariates of

the nonzero components and zero components are independent. We consider t = 0, 1 in our

simulation. The error term εi ∼ N(0, 1.52).

Example 2.

f(xi) = −5 + 8x3
i1 + 10xi2(1− xi2)− 10x5

i3 − 8x2
i4 + εi,

where xi1, · · · , xip are simulated in the same way as the covariates in Example 1 and the

error term εi ∼ N(0, 1.52).

Example 3.

f(x) = −4 + 4x1 + cos(2πx2)− 8x3
3 +

√
x4(1− x4) sin

(2π(1 + 2(9−4s)/5)

x + 2(9−4s)/5

)

where s = 3. where xi1, · · · , xip are simulated similar as Example 1 and s = 3 which controls

the oscillation of the function f4(x4) (Donoho and Johnstone (1994)). The covariates are

simulated similarly to those in Example 1, except that wi1, · · · , wip, ui, vi are now simulated

independently from U [0, 1], i = 1, · · · , n. The error term εi ∼ N(0, 1).

The results are summarized in Tables 1 and 2, based on 400 runs. The columns in these

tables are: model error (ER), percentage of occasions on which the correct components

are included in the selected model (IN%) and percentage of occasions on which correct

components are selected (CS%), averaged over 400 replications. Enclosed in parentheses are

the corresponding standard errors. The model error is computed as n−1
∑n

i=1(f̂(xi)−f(xi))
2,

where f is the function given above in each example.

Several observations can be made from Tables 1 and 2. The adaptive group Lasso has

higher percentage of occasions on which correct models are selected than the group Lasso

and the Lasso. For each method, the results for p = 21 are better than those for p = 100 in

terms of model error and variable selection. The is to be expected since variable selection is

more difficult in a larger model than in a small one. The results for covariates independently

simulated are better than those when covariates are correlated. Finally, the models selected
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by the group Lasso and adaptive group Lasso have similar model error to those selected by

the Lasso, but have higher percentages of correct selections. This shows it is important to

take into account the natural group structure in the spline based approach considered here.

These simulation results suggest that both the group Lasso and adaptive group Lasso are

effective for component selection in sparse, high-dimensional nonparametric additive models,

and that the adaptive group Lasso can considerably improve the selection results over the

group Lasso.

5 Application to economic growth data

Sala-i-Martin (1997) investigated the relation between economic growth and a variety of

covariates in 99 countries. His model is

Yi = β0 +

p∑
j=1

Xijβj + εi,

where Yi is the average rate of growth of the gross domestic product of country i from

1960-1992, Xij is the jth covariate in country i, β0 and the βjs are intercept and regression

coefficients, and εi is an unobserved random variable with mean 0. The data are available at

www.columbia.edu/∼xs23/data/millions.htm. They were compiled from a variety of sources

and include 59 potential covariates that describe economic, political, social, and geograph-

ical characteristics of the countries. Sala-i-Martin (1997) used a heuristic method to select

covariates for inclusion in the model. This method required repeatedly estimating model

(10) by ordinary least squares using some 2 million different subsets of the covariates. Sala-

i-Martin (1997) found that 22 of the 59 variables were significant. He noted that although

his model is linear, other investigators have found nonlinear relations between the covariates

and economic growth. Many of the covariates in Sala-i-Martins data are binary. We used

the methods of Sections 2-4 to model the relation between the economic growth rate and 21

continuous covariates in the data. The covariates are listed in Table 3. We estimated model

(1) using the ordinary (not group) Lasso, group Lasso, and adaptive group Lasso. We scaled

the covariates so that their values are between 0 and 1 and used cubic splines with 7 knots

to estimate the additive components. The check signs in Table 3 indicate the variables that

were selected by the three methods. With Lasso, a variable is considered to be selected if

any of the estimated coefficients of the spline approximation to its additive component are

non-zero. Table 4 shows the residual sums of squares obtained with each of the estimation

methods. The group Lasso and adaptive group Lasso select the same 13 variables out of

the total of 21. The ordinary Lasso selects all of the variables, so it does not reduce the

dimension of the model. Figures 1 and 2 shows the estimated additive components. Many

12



are highly nonlinear, confirming the need for a model selection method that takes account

of nonlinearity.

6 Concluding remarks

In this paper, we have studied the asymptotic properties of the group Lasso and adaptive

group Lasso for variable selection in nonparametric additive models when p is large. An

important condition required in our results is that the number of nonzero components is

fixed. While this condition is reasonable is many applications, it would be interesting to

relax this condition and investigate the case when the number of nonzero components can

also increase with the sample size. Clearly, there needs to be restriction on the number of

nonzero components so that the model is identifiable.

We have only considered the linear nonparametric additive models. The adaptive group

Lasso can be applied to generalized nonparametric additive models, such as the gener-

alized logistic nonparametric additive model and other nonparametric models with high-

dimensional data. However, more work is needed to understand the properties of this ap-

proach in those more complicated models.
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7 Proofs

We first prove the following lemmas. Denote the centered versions of Sn by

S0
nj =

{
fnj : fnj(x) =

mn∑

k=1

bjkψk(x), (βj1, . . . , βjmn) ∈ IRmn

}
, 1 ≤ j ≤ p,

where ψk’s are the centered spline bases defined in (4).

Lemma 1 Suppose that f ∈ F and Ef(Xj) = 0. Then, under (A3) and (A4), there exists

an fn ∈ S0
nj satisfying

‖fn − f‖2 = Op(m
−d
n + m1/2

n n−1/2).

In particular, if we choose mn = O(n1/(2d+1)), then

‖fn − f‖2 = Op(m
−d
n ) = Op(n

−d/(2d+1)).
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Proof of Lemma 1. By (A4), for f ∈ F , there is an f ∗n ∈ Sn such that ‖f−f ∗n‖2 = O(m−d
n ).

Let fn = f ∗n − n−1
∑n

i=1 f ∗n(Xij). Then fn ∈ S0
nj and |fn − f | ≤ |f ∗n − f |+ |Pnf

∗
n|, where Pn

is the empirical measure of iid random variables X1j, . . . , Xnj. Consider

Pnf ∗n = (Pn − P )f ∗n + P (f ∗n − f).

Here we use the linear functional notation, i.e., Pf =
∫

fdP , where P is the probability

measure of X1j. Now (Pn−P )f ∗n = Op(n
−1/2m

1/2
n ), and by (A4), |P (f ∗n−f)| ≤ C2‖f ∗n−f‖2 =

O(m−d
n ) for some constant C2 > 0. The lemma follows from the triangle inequality. ¤

Lemma 2 Suppose that conditions (A2) and (A4) hold. Let Tjk = n−1/2m
1/2
n

∑n
i=1 ψk(Xij)εi, 1 ≤

j ≤ p, 1 ≤ k ≤ mn. Let Tn = max1≤j≤p,1≤k≤mn |Tjk|. Then

E(Tn) ≤ C1n
−1/2m1/2

n

√
log(pmn)

(√
2C2m−1

n n log(pmn) + 4 log(2pmn) + C2nm−1
n

)1/2

.

where C1 and C2 are two positive constants. In particular, when mn log(pmn)/n → 0,

E(Tn) = O(1)
√

log(pmn).

Proof of Lemma 2. Let s2
njk =

∑n
i=1 ψ2

k(Xij). Conditional on Xij’s, Tjk ∼ N(0, s2
njk). Let

s2
n = max1≤j≤p,1≤k≤mn s2

njk. By (A2) and the maximal inequality for subgaussian random

variables (Van der Vaart and Wellner 1996, Lemmas 2.2.1 and 2.2.2),

E
(

max
1≤j≤p,1≤k≤mn

|Tjk|
∣∣{Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p}) ≤ C1n

−1/2m1/2
n sn

√
log(pmn).

Therefore,

E
(

max
1≤j≤p,1≤k≤mn

|Tjk|
) ≤ C1n

−1/2m1/2
n

√
log(pmn) E(sn), (9)

where C1 > 0 is a constant. By (A4) and the properties of B-splines,

|ψk(Xij)| ≤ |φk(Xij)|+ |φ̄jk| ≤ 2 and E(ψk(Xij))
2 ≤ C2m

−1
n , (10)

for a constant C2 > 0, for every 1 ≤ j ≤ p and 1 ≤ k ≤ mn. By (10),

n∑
i=1

E[ψ2
k(Xij)− Eψ2

k(Xij)]
2 ≤ 4C2nm−1

n , (11)

and

max
1≤j≤p,1≤k≤mn

n∑
i=1

Eψ2
k(Xij) ≤ C2nm−1

n . (12)
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By Lemma 4.2 of Van de Geer (2008), (10) and (11) imply

E
(

max
1≤j≤p,1≤k≤mn

∣∣∣
n∑

i=1

{ψ2
k(Xij)− Eψ2

k(Xij)}
∣∣∣
)
≤

√
2C2m−1

n n log(pmn) + 4 log(2pmn).

Therefore, by (12) and the triangle inequality,

Es2
n ≤

√
2C2m−1

n n log(pmn) + 4 log(2pmn) + C2nm−1
n .

Now since Esn ≤ (Es2
n)1/2, we have

Esn ≤
(√

2C2m−1
n n log(pmn) + 4 log(2pmn) + C2nm−1

n

)1/2

. (13)

The lemma follows from (9) and (13). ¤
Recall CA = n−1Z′AZA, where A ⊂ {1, . . . , p}. Let ρmin(CA) and ρmax(CA) be the

minimum and maximum eigenvalues of CA, respectively.

Lemma 3 Let mn = O(nγ) where 0 < γ < 0.5. Suppose that |A| is bounded by a fixed

constant independent of n and p. Let h ≡ hn ³ m−1
n . Then, under (A3) and (A4), with

probability converging to one,

c1hn ≤ ρmin(CA) ≤ ρmax(CA) ≤ c2hn,

where c1 and c2 are two positive constants.

Proof of Lemma 3. Without loss of generality, suppose A = {1, . . . , k}. Then ZA =

(Z1, . . . ,Zq). Let b = (b′1, . . . ,b
′
q)
′, where bj ∈ Rmn . By Lemma 3 of Stone (1985),

‖Z1b1 + · · ·+ Zqbq‖2 ≥ c3(‖Z1b1‖2 + · · ·+ ‖Zqbq‖2)

for a certain constant c3 > 0. By the triangle inequality,

‖Z1b1 + · · ·+ Zqbq‖2 ≤ ‖Z1b1‖2 + · · ·+ ‖Zqbq‖2.

Since ZAb = Z1b1 + · · ·+ Zqbq, the above two inequalities imply that

c3(‖Z1b1‖2 + · · ·+ ‖Zqbq‖2) ≤ ‖ZAb‖2 ≤ ‖Z1b1‖2 + · · ·+ ‖Zqbq‖2.

Therefore,

c2
3(‖Z1b1‖2

2 + · · ·+ ‖Zqbq‖2
2) ≤ ‖ZAb‖2

2 ≤ 2(‖Z1b1‖2
2 + · · ·+ ‖Zqbq‖2

2). (14)
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Let Cj = n−1Z′jZj. By Lemma 6.2 of Shen, Wolf and Zhou (1998),

c4h ≤ ρmin(Cj) ≤ ρmax(Cj) ≤ c5h, j ∈ A. (15)

Since CA = n−1Z′AZA, it follows from (14) that

c2
3

(
b′1C1b1 + · · ·+ b′qCqbq

) ≤ b′CAb ≤ 2
(
b′1C1b1 + · · ·+ b′qCqbq

)
.

Therefore, by (15),

b′1C1b1

‖b‖2
2

+ · · ·+ b′qCqbq

‖b‖2
2

=
b′1C1b1

‖b1‖2
2

‖b1‖2
2

‖b‖2
2

+ · · ·+ b′qCqbq

‖bq‖2
2

‖bq‖2
2

‖b‖2
2

≥ ρmin(C1)
‖b1‖2

2

‖b‖2
2

+ · · ·+ ρmin(Cq)
‖bq‖2

2

‖b‖2
2

≥ c4h.

Similarly,
b′1C1b1

‖b‖2
2

+ · · ·+ b′qCqbq

‖b‖2
2

≤ c5h.

Thus we have

c2
3c4h ≤ b′CAb

b′b
≤ 2c5h.

Thus the lemma follows. ¤

Proof of Theorem 1. The proof of parts (i) and (ii) essentially follows the proof of

Theorem 1 of Wei and Huang (2008). The only change that must be made here is that we

need to consider the approximation error of the regression functions by splines. Specifically,

let ξn = εn + δn, where δn = (δn1, . . . , δnn)′ with δni =
∑qn

j=1(f0j(Xij) − fnj(Xij)). Since

‖f0j − fnj‖2 = O(m−d
n ) = O(n−d/(2d+1)) for mn = n1/(2d+1), we have

‖δn‖2 ≤ C1

√
nqm−2d

n = C1qn
1/(4d+2),

for some constant C1 > 0. For any integer t, let

χt = max
|A|=t

max
‖UAk

‖2=1,1≤k≤t

|ξ′nVA(s)|
‖VA(s)‖2

and χ∗t = max
|A|=t

max
‖UAk

‖2=1,1≤k≤t

|ε′nVA(s)|
‖VA(s)‖2

where VA(SA) = ξ
′
n(ZA(Z

′
AZA)−1S̄A − (I − PA)Xβ for N(A) = q1 = m ≥ 0, SA =

(S
′
A1

, · · · , S
′
Am

)
′
, SAk

= λ
√

dAk
UAk

and ‖UAk
‖2 = 1.

For a sufficiently large constant C2 > 0, define

Ωt0 = {(Z, εn) : xt ≤ σC2

√
((t ∨ 1)mn log(pmn),∀t ≥ t0},
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and

Ω∗
t0

= {(Z, εn) : x∗t ≤ σC2

√
(t ∨ 1)mn log(pmn),∀t ≥ t0},

where t0 ≥ 0.

As in the proof of Theorem 1 of Wei and Huang (2008) and in the proof of Theorem 1 of

Zhang and Huang (2008),

(Z, εn) ∈ Ωq ⇒ |Ã1| ≤ M∗
1 (λn1)q.

By the triangle and Cauchy-Schwarz inequalities,

|ξ′nVA(s)|
‖VA(s)‖2

=
|ε′nVA(s) + δ′nVA(s)|

‖VA(s)‖2

≤ |ε′nVA(s)|
‖VA‖2

+ ‖δn‖. (16)

In the proof of Theorem 1 of Wei and Huang (2008), it is shown that

P(Ω∗
0) ≥ 2− 2

p1+c0
− exp

(
2p

p1+c0

)
→ 1. (17)

Since
|δ′nVA(s)|
‖VA(s)‖2

≤ ‖δn‖2 ≤= C1qn
1

2(2d+1)

and mn = O(n1/(2d+1)), we have for all t ≥ 0 and n sufficiently large,

‖δn‖2 ≤ C1qn
1

2(2d+1) ≤ σC2

√
(t ∨ 1)mn log(p) . (18)

It follows from (16), (17) and (18) that P(Ω0) → 1. This completes the proof of part (i) of

Theorem 1.

Before proving part (ii), we first prove part (iii) of Theorem 1. By the definition of

β̃n ≡ (β̃
′
n1, . . . , β̃

′
np)

′,

‖Y − Zβ̃n‖2
2 + λn1

p∑
j=1

‖β̃nj‖2 ≤ ‖Y − Zβn‖2
2 + λn1

p∑
j=1

‖βnj‖2. (19)

Let A2 = {j : ‖βnj‖2 6= 0 or ‖β̃nj‖2 6= 0} and dn2 = |A2|. By part (i), dn2 = Op(q). By (19)

and the definition of A2,

‖Y − ZA2β̃nA2
‖2

2 + λn1

∑
j∈A2

‖β̃nj‖2 ≤ ‖Y − ZA2βnA2
‖2

2 + λn1

∑
j∈A2

‖βnj‖2. (20)

17



Let ηn = Y − Zβn. Write

Y − ZA2β̃nA2
= Y − Zβn − ZA2(β̃nA2

− βnA2
) = ηn − ZA2(β̃nA2

− βnA2
).

We have

‖Y − ZA2β̃nA2
‖2

2 = ‖ZA2(β̃nA2
− βnA2

)‖2
2 − 2η′nZA2(β̃nA2

− βnA2
) + η′nηn.

We can rewrite (20) as

‖ZA2(β̃nA2
− βnA2

)‖2
2 − 2η′nZA2(β̃nA2

− βnA2
) ≤ λn1

∑
j∈A1

‖βnj‖2 − λn1

∑
j∈A1

‖β̃nj‖2. (21)

Now

∣∣∣
∑
j∈A1

‖βnj‖2 −
∑
j∈A1

‖β̃nj‖2

∣∣∣ ≤
√
|A1| · ‖β̃nA1

− βnA1
‖2 ≤

√
|A1| · ‖β̃nA2

− βnA2
‖2. (22)

Let νn = ZA2(β̃nA2
− βnA2

). Combining (20), (21) and (22) to get

‖νn‖2
2 − 2η′nνn ≤ λn1

√
|A1| · ‖β̃nA2

− βnA2
‖2. (23)

Let η∗n be the projection of ηn to the span of ZA2 , that is, η∗n = ZA2(Z
′
A2

ZA2)
−1Z′A2

ηn.

By the Cauchy-Schwartz inequality,

2|η′nνn| ≤ 2‖η∗n‖2 · ‖νn‖2 ≤ 2‖η∗n‖2
2 +

1

2
‖νn‖2

2. (24)

From (23) and (24), we have

‖νn‖2
2 ≤ 4‖η∗n‖2

2 + 2λn1

√
|A1| · ‖β̃nA2

− βnA2
‖2.

Let cn∗ be the smallest eigenvalue of Z′A2
ZA2/n. By Lemma 3 and part (i), cn∗ ³p m−1

n .

Since ‖νn‖2
2 ≥ ncn∗‖β̃nA2

− βnA2
‖2

2 and 2ab ≤ a2 + b2,

ncn∗‖β̃nA2
− βnA2

‖2
2 ≤ 4‖η∗n‖2

2 +
(2λn1

√
|A1|)2

2ncn∗
+

1

2
ncn∗‖β̃nA2

− βnA2
‖2

2.

It follows that

‖β̃nA2
− βnA2

‖2
2 ≤

8‖η∗n‖2
2

ncn∗
+

4λ2
n1|A1|

n2c2
n∗

. (25)
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Let f0(Xi) =
∑p

j=1 f0j(Xij) and f0A(Xi) =
∑

j∈A f0j(Xij). Write

ηi = Yi − µ− f0(Xi) + (µ− Y ) + f0(Xi)−
∑
j∈A2

Z ′
ijβnj = εi + (µ− Y ) + fA2(Xi)− fnA2(Xi).

Since |µ− Y |2 = Op(n
−1) and ‖f0j − fnj‖∞ = O(m−d

n ), we have

‖η∗n‖2
2 ≤ 2‖ε∗n‖2

2 + Op(1) + O(ndn2m
−2d
n ), (26)

where ε∗n is the projection of εn = (ε1, . . . , εn)′ to the span of ZA2 . We have

‖ε∗n‖2
2 = ‖(Z′A2

ZA2)
−1/2Z′A2

εn‖2
2 ≤

1

ncn∗
‖Z′A2

εn‖2
2.

Now

max
A:|A|≤dn2

‖Z′Aεn‖2
2 = max

A:|A|≤dn2

∑
j∈A

‖Z′jεn‖2
2 ≤ dn2mn max

1≤j≤p,1≤k≤mn

|Z ′
jkε|2,

where Zjk = (ψk(X1j), . . . , ψk(Xnj))
′. By Lemma 2,

max
1≤j≤p,1≤k≤mn

|Z ′
jkεn|2 = nm−1

n max
1≤j≤p,1≤k≤mn

|(mn/n)1/2Z ′
jkεn|2 = Op(1)nm−1

n log(pmn).

It follows that,

‖ε∗n‖2
2 = Op(1)

dn2 log(pmn)

cn∗
. (27)

Combining (25), (26), and (27), we get

‖β̃A2
− βA2

‖2
2 ≤ Op

(dn2 log(pmn)

nc2
n∗

)
+ Op

( 1

ncn∗

)
+ O

(dn2m
−2d
n

cn∗

)
+

4λ2
n1|A1|

n2c2
n∗

.

Since dn2 = Op(q), cn∗ ³p m−1
n and c∗n ³p m−1

n , we have

‖β̃A2
− βA2

‖2
2 ≤ Op

(m2
n log(pmn)

n

)
+ Op

(mn

n

)
+ O

( 1

m2d−1
n

)
+ O

(
4m2

nλ2
n1

n2

)
.

This completes the proof of part (iii).

We now prove part (ii). Since ‖fj‖2 ≥ cf > 0, 1 ≤ j ≤ q, ‖fj − fnj‖2 = O(m−d
n ) and

‖fnj‖2 ≥ ‖fj‖2 − ‖fj − fnj‖2, we have ‖fnj‖2 ≥ 0.5cf for n sufficiently large. By a result

of de Boor (2001), see also (12) of Stone (1986), there are positive constants c6 and c7 such

that

c6m
−1
n ‖βn‖2

2 ≤ ‖fnj‖2
2 ≤ c7m

−1
n ‖βnj‖2

2.

It follows that,

‖βnj‖2
2 ≥ c−1

7 mn‖fnj‖2
2 ≥ 0.25c−1

7 c2
fmn.
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Therefore, if ‖βnj‖2 6= 0 but ‖β̃nj‖2 = 0, then

‖β̃nj − βnj‖2
2 ≥ 0.25c−1

7 c2
fmn. (28)

However, since (mn log(pmn))/n → 0 and (λ2
n1mn)/n2 →, (28) contradicts part (iii). ¤

Proof of Theorem 2. By the definition of f̃j, 1 ≤ j ≤ p, parts (i) and (ii) follow from parts

(i) and (ii) of Theorem 1 directly.

Now consider part (iii). By the properties of spline (de Boor (2001)),

c6m
−1
n ‖β̃nj − βnj‖2

2 ≤ ‖f̃nj − fnj‖2
2 ≤ c7m

−1
n ‖β̃nj − βnj‖2

2.

Thus

‖f̃nj − fnj‖2
2 = Op

(mn log(pmn)

n

)
+ Op

(
1

n

)
+ O

( 1

m2d
n

)
+ O

(
4mnλ

2
n1

n2

)
. (29)

By (A3),

‖fj − fnj‖2
2 = O(m−2d

n ). (30)

Part (iii) follows from (29) and (30). ¤
In the proofs below, for any matrix H, denote its 2-norm by ‖H‖, which is equal to its

largest eigenvalue. This norm satisfies the inequality ‖Hx‖ ≤ ‖H‖‖x‖ for a column vector

x whose dimension is the same as the number of the columns of H.

Proof of Theorem 3. By the KKT, a necessary and sufficient condition for β̂n is





2Z′j
(
Y − Zβ̂n

)
= λn2wnj

β̂nj

‖β̂nj‖
, ‖β̂j‖2 6= 0, j ≥ 1,

2‖Z′j
(
Y − Zβ̂n

)‖2 < λn2wnj, ‖β̂nj‖ = 0, j ≥ 1.
(31)

Let νn = (wnjβ̂j/(2‖β̂nj‖), j ∈ A1)
′. Define

β̂nA1
= (Z′A1

ZA1)
−1(Z′A1

Y − λn2νn). (32)

If β̂nA1
=0 βnA1

, then the equation in (31) holds for β̂n ≡ (β̂
′
nA1

,0′)′. Thus, since

Zβ̂n = ZA1β̂nA1
for this β̂n and {Zj, j ∈ A1} are linearly independent,

β̂n =0 βn if





β̂nA1
=0 βnA1

‖Z′j
(
Y − ZA1β̂nA1

)‖2 ≤ λn2wnj/2, ∀j 6∈ A1.
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This is true if

β̂n =0 βn if




‖βnj‖2 − ‖β̂nj‖2 < ‖βnj‖2, ∀j ∈ A1,

‖Z′j(Y − ZA1β̂nA1
)‖2 ≤ λn2wnj/2, ∀j 6∈ A1.

Therefore,

P(β̂n 6=0 βn) ≤ P
(
‖β̂nj − βnj‖2 ≥ ‖βnj‖2, ∃j ∈ A1

)

+P
(
‖Z′j(Y − ZA1β̂nA1

)‖2 > λn2wnj/2, ∃j 6∈ A1

)
.

Let f0j(Xj) = (f0j(X1j), . . . , f0j(Xnj))
′ and δn =

∑
j∈A1

f0j(Xj)− ZA1βnA1
. By Lemma

1, we have

n−1‖δn‖2 = Op(qm
−2d
n ). (33)

Let Hn = In − ZA1(Z
′
A1

ZA1)
−1Z′A1

. By (32),

β̂nA1
− βnA1

= n−1C−1
A1

(
Z′A1

(εn + δn)− λn2νn

)
, (34)

and

Y − ZA1β̂nA1
= Hnεn + Hnδn + λn2ZA1C

−1
A1

νn/n. (35)

Based on these two equations, Lemma 5 below shows that

P
(
‖β̂nj − βnj‖2 ≥ ‖βnj‖2, ∃j ∈ A1

)
→ 0,

and Lemma 6 below shows that

P
(
‖Z′j(Y − ZA1β̂nA1

)‖2 > λn2wnj/2,∃j 6∈ A1

)
→ 0.

These two equations lead to part (i) of the theorem.

We now prove part (ii) of Theorem 3. As in (26), for ηn = Y − Zβn and η∗n1 =

ZA1(Z
′
A1

ZA1)
−1Z′A1

ηn, we have

‖η∗n1‖2
2 ≤ 2‖ε∗n1‖2

2 + Op(1) + O(qnm−2d
n ), (36)

where ε∗n1 is the projection of εn = (ε1, . . . , εn)′ to the span of ZA1 . We have

‖ε∗n1‖2
2 = ‖(Z′A1

ZA1)
−1/2Z′A1

εn‖2
2 ≤

1

nρn1

‖Z′A1
εn‖2

2 = Op(1)
|A1|
ρn1

. (37)
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Now similarly to the proof of (25), we can show that

‖β̂nA1
− βnA1

‖2
2 ≤

8‖η∗n1‖2
2

nρn1

+
4λ2

n2|A1|
n2ρ2

n1

. (38)

Combining (36), (37) and (38), we get

‖β̂nA1
− βnA1

‖2
2 = Op

( 8

nρ2
n1

)
+ Op

( 1

nρn1

)
+ O

( 1

m2d−1
n

)
+ O

(
4λ2

n2

n2ρ2
n1

)
.

Since ρn1 ³p m−1
n , the result follows.

The following lemmas are needed in the proof of Theorem 3.

Lemma 4 For νn = (wnjβ̃j/(2‖β̃nj‖), j ∈ A1)
′, under condition (B1),

‖νn‖2 = Op(h
2
n) = Op

(
(b2

n1cb)
−2r−1

n + qb−1
n1

)
.

Proof of Lemma 4. Write

‖νn‖2 =
∑
j∈A1

w2
j =

∑
j∈A1

‖β̃nj‖−2 =
∑
j∈A1

‖βnj‖2 − ‖β̃nj‖2

‖βnj‖2 · ‖β̃nj‖2
+

∑
j∈A1

‖βnj‖−1.

Under (B2),
∑
j∈A1

∣∣‖βnj‖2 − ‖β̃nj‖2
∣∣

‖βnj‖2 · ‖β̃nj‖2
≤ Mc−2

b b−4
n1 ‖β̃n − βn‖,

and ∑
j∈A1

‖βnj‖−2 ≤ qb−2
n1 .

The claim follows. ¤
Let ρn3 be the maximum of the largest eigenvalues of n−1Z′jZj, j ∈ A0, that is, ρn3 =

maxj∈A0 ‖n−1Z′jZj‖2. By Lemma 3,

bn1 ³ O(m1/2
n ), ρn1 ³p m−1

n , ρn2 ³p m−1
n and ρn3 ³p m−1

n . (39)

Lemma 5 Under conditions (B1), (B2), (A3) and (A4),

P
(
‖β̂nj − βnj‖2 ≥ ‖βnj‖2, ∃j ∈ A1

)
→ 0. (40)

Proof of Lemma 5. Let Tnj be an mn × qmn matrix with the form

Tnj = (0mn , . . . ,0mn , Imn ,0mn , . . . ,0mn),

22



where Omn is an mn ×mn matrix of zeros and Imn is an mn ×mn identity matrix, and Imn

is at the jth block. By (34),

β̂nj − βnj = n−1TnjC
−1
A1

(Z′A1
εn + Z′A1

δn − λn2νn).

By the triangle inequality,

‖β̂nj − βnj‖2 ≤ n−1‖TnjC
−1
A1

Z′A1
εn‖2 + n−1‖TnjC

−1
A1

Z′A1
δn‖2 + n−1λn2‖TnjC

−1
A1

νn‖2. (41)

Let C be a generic constant independent of n. The first term on the right-hand side

max
j∈A1

n−1‖TnjC
−1
A1

Z′A1
εn‖2 ≤ n−1ρ−1

n1 ‖Z′A1
εn‖2

= n−1/2ρ−1
n1 ‖n−1/2Z′A1

εn‖2

= Op(1)n−1/2ρ−1
n1 m−1/2

n (qmn)1/2 (42)

By (33), the second term

max
j∈A1

n−1‖TnjC
−1
A1

Z′A1
δn‖2 ≤ ‖C−1

A1
‖2 · ‖n−1Z′A1

ZA1‖1/2
2 · ‖n−1δn‖2

= Op(1)ρ−1
n1 ρ

1/2
n2 q1/2m−d

n . (43)

By Lemma 4, the third term

max
j∈A1

n−1λn2‖TnjC
−1
A1

νn‖2 ≤ nλn2ρ
−1
n1 ‖νn‖2 = Op(1)ρ−1

n1 n−1λn2hn. (44)

Thus (40) follows from (39), (42), (43), (44) and condition (B2a). ¤

Lemma 6 Under conditions (B1), (B2), (A3) and (A4),

P
(
‖Z′j(Y − ZA1β̂nA1

)‖2 > λn2wnj/2,∃j 6∈ A1

)
→ 0. (45)

Proof of Lemma 6. By (35), we have

Z′j
(
Y − ZA1β̂nA1

)
= Z′jHnεn + Z′jHnδn + λn−1Z′jZA1C

−1
A1

νn. (46)

Recall sn = p− q is the number of zero components in the model. By Lemma 2,

E
(

max
j 6∈A1

‖n−1/2Z′jHnεn‖2

)
≤ O(1)

{
log(snmn)

}1/2
. (47)
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Since wnj = ‖β̂nj‖−1 = Op(rn) for j 6∈ A1 and by (47), for the first term on the right hand

side of (46) we have

P
(
‖Z′jHnεn‖2 > λn2wnj/6,∃j 6∈ A1

)

≤ P
(
‖Z′jHnεn‖2 > Cλn2rn,∃j 6∈ A1

)
+ o(1)

= P
(

max
j 6∈A1

‖n−1/2Z′jHnεn‖2 > Cn−1/2λn2rn

)
+ o(1)

≤ O(1)
n1/2{log(snmn)}1/2

Cλn2rn

+ o(1). (48)

By (33), the second term on the right hand side of (46)

max
j 6∈A1

‖Z′jHnδn‖2 ≤ n1/2 max
j 6∈A1

‖n−1Z′jZj‖1/2
2 · ‖Hn‖2 · ‖δn‖2 = O(1)nρ

1/2
n3 q1/2m−d

n . (49)

By Lemma 4, the third term on the right hand side of (46)

max
j 6inA1

λn2n
−1‖ZjZA1C

−1
A1

νn‖2 ≤ λn2 max
j∈A1

‖n−1/2Zj‖2 · ‖n−1/2ZA1C
−1/2
A1

‖2 · ‖C−1/2
A1

‖2 · ‖νn‖2

= λn2ρ
1/2
n3 ρ

−1/2
n1 Op(qb

−1
n1 ). (50)

Therefore, (45) follows from (39), (48), (49), (50) and condition (B2b). ¤

Proof of Theorem 4. The proof is similar to that of Theorem 2 and is omitted.
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Adaptive Group Lasso Group Lasso Lasso
Example ER IN% CS% ER IN% CS% ER IN% CS%

t = 0 38.5 84 61 38.6 85 42 38.7 80 40
(4.5) (1.8) (2.5) (4.4) (1.8) (2.5) (4.4) (2.0) (2.5)

t = 1 32.1 79 60 32.2 82 42 32.5 75.8 39
(4.1) (2.0) (2.4) (4.2) (2.0) (2.5) (4.2) (2.1) (2.5)

t = 0 28.4 59 34 28.9 67 30 28.9 62 30
(4.1) (2.5) (2.4) (4.1) (2.4) (2.3) (4.1) (2.5) (2.3)

t = 1 25.4 59 31 25.9 67 23 25.9 62 20
(3.8) (2.4) (2.3) (3.8) (2.4) (2.1) (3.8) (2.4) (2.0)

t = 0 62.8 98 76 62.8 98 48 62.8 97 27
(3.7) (0.7) (2.1) (3.7) (0.7) (2.5) (3.8) (0.7) (2.2)

t = 1 60.9 99 60 60.9 99 27 60.9 97 18
(2.0) (0.5) (2.4) (2.0) (0.5) (0.5) (2.1) (0.7) (1.9)

Table 1: n = 100, p = 21. ER, model error; IN%, percentage of occasions on which the correct
components are included in the selected model; CS%, percentage of occasions on which
correct components are selected, averaged over 400 replications. Enclosed in parentheses are
the corresponding standard errors.

Adaptive Group Lasso Group Lasso Lasso
Example ER IN% CS% ER IN% CS% ER IN% CS%

t = 0 38.9 49 42 39.3 51 26 40.5 30.1 5
(4.7) (2.5) (2.5) (4.7) (2.5) (2.2) (4.8) (2.3) (1.0)

t = 1 32.0 47 39 32.3 49 27 33.3 38 8
(4.1) (2.5) (2.4) (4.1) (2.5) (2.2) (4.3) (2.4) (1.4)

t = 0 28.1 28 17 29.5 30 14 30.2 34 9
(4.4) (2.1) (1.9) (4.4) (0.4) (1.8) (4.4) (2.4) (1.4)

t = 1 29.3 20 18 31.0 20 9 31.51 40 10
(4.6) (2.4) (2.2) (4.4) (2.2) (1.5) (4.4) (2.4) (1.5)

t = 0 62.6 87 71 62.6 87 42 62.9 32 11
(4.4) (1.7) (2.3) (4.4) (1.7) (2.5) (4.4) (2.3) (1.5)

t = 1 60.7 94 53 60.8 95 21 61.1 51 12
(2.5) (1.2) (2.5) (2.4) (1.1) (0.4) (2.5) (2.5) (1.6)

Table 2: n = 100, p = 100. ER, model error; IN%, percentage of occasions on which the cor-
rect components are included in the selected model; CS%, percentage of occasions on which
correct components are selected, averaged over 400 replications. Enclosed in parentheses are
the corresponding standard errors.
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Variables AGL GL Lasso
log GDP per capita in 1960

√ √ √
life expectancy in 1960

√ √ √
primary school enrollment rate in 1960

√ √ √
average rate of growth of population between 1960 and 1990

√
higher education enrollment rate in 1960

√
number of years on open economy

√ √ √
number of revolutions and coups

√ √ √
political rights

√ √ √
index of civil liberties

√
absolute latitude

√ √ √
fraction of primary exports in total exports in 1970

√ √ √
urbanization rate (fraction in cities)

√
fraction Buddhist

√ √ √
fraction Catholic

√ √ √
fraction Confucianist

√ √ √
fraction Hindu

√
fraction Muslim

√
fraction Protestant

√ √ √
fraction GDP in mining

√ √ √
fraction of the population that speaks foreign language

√
fraction of the population that speaks English

√

Table 3: Variables selected by the adaptive group Lasso, group Lasso and Lasso.

No. of variables RSS
Adaptive Group Lasso 13 41.73

Group Lasso 13 71.28
Lasso 21 14.93

Table 4: No. of variables means how many variables are selected, RSS is the residual sum
of squares.
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Figure 1: Plots of the estimated nonzero components by the adaptive group Lasso.
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Figure 2: Plots of the estimated nonzero components by the adaptive group Lasso.
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